Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.
نویسندگان
چکیده
During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).
منابع مشابه
GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.
Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that participate in a highly beneficial root symbiosis with 80% of land plants. Strigolactones are trace molecules in plant root exudates that are perceived by AM fungi at subnanomolar concentrations. Within just a few hours, they were shown to stimulate fungal mitochondria, spore germination, and branching of germinating hyphae. In this ...
متن کاملFlavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus
Abundant data on the effect of flavonoids on spore germination, hyphal growth and root colonization by AMF are available. Moreover, the flavonoid pattern in mycorrhizal roots changes, thus flavonoids have been suggested as arbuscular mycorrhizal signalling compounds. In our work we studied the accumulation of flavonoids in roots of Medicago sativa i) after the exposure of uncolonized roots to s...
متن کاملBioprotection against Gaeumannomyces graminis in barley – a comparison between arbuscular mycorrhizal fungi
Gaeumannomyces graminis var. tritici causes take-all disease, the most important root disease of cereal plants. Cereal plants are able to form a symbiotic association with soil-borne arbuscular mycorrhizal fungi which can provide bioprotection against soil-borne fungal pathogens. However, the bioprotective effect of arbuscular mycorrhizal fungi against soil-borne fungal pathogens might vary. In...
متن کاملA diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula.
Using dual cultures of arbuscular mycorrhizal (AM) fungi and Medicago truncatula separated by a physical barrier, we demonstrate that hyphae from germinating spores produce a diffusible factor that is perceived by roots in the absence of direct physical contact. This AM factor elicits expression of the Nod factor-inducible gene MtENOD11, visualized using a pMtENOD11-gusA reporter. Transgene ind...
متن کاملFlavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus.
The effect of the flavonoids chrysin, isorhamnetin, kaempferol, luteolin, morin and rutin on pre-symbiotic growth, such as spore germination, hyphal length, hyphal branching and the formation of auxiliary cells and secondary spores, of the arbuscular mycorrhizal fungi Gigaspora rosea, G. margarita, Glomus mosseae and G. intraradices was studied. According to the effect on each fungal growth par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 131 3 شماره
صفحات -
تاریخ انتشار 2003